Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Shi \ddagger

Department of Basic Course, Tianjin Agricultural College, Tianjin 300384, People's Republic of China
\# Current address: School of Chemical Engineering and Technology Tianjin University Tianjin 300072 People's Republic of China

Correspondence e-mail: shi_jun99@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.127$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

(E)-4-[4-(Benzyloxy)-3-ethoxybenzylidene-amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The title compound, $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$, was prepared by the reaction of 4-(benzyloxy)-3-ethoxybenzaldehyde and 4-amino-1,5-dimethyl-2-phenyl-1 H-pyrazol-3(2H)-one. The ethylvanillin group makes dihedral angles of 72.97 (8) and $76.75(5)^{\circ}$ with the planes of the two terminal phenyl rings, and an angle of $39.24(5)^{\circ}$ with the pyrazolone ring plane. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to consolidate the crystal packing.

Comment

Metal complexes based on Schiff bases have attracted much attention because of their significant biological activity (Kahwa et al., 1986). Consequently, a large number of Schiff base derivatives have been synthesized to develop protein and enzyme mimics (Santos et al., 2001). We report here the synthesis and structure of the title pyrazalone Schiff base derivative, (I).

(I)

In (I), the ethylvanillin group ($\mathrm{C} 8-\mathrm{C} 13 / \mathrm{C} 16 / \mathrm{O} 1 / \mathrm{O} 2$) is planar, with an r.m.s. deviation of fitted atoms of $0.0146 \AA$ (Fig. 1). This group makes dihedral angles of 72.97 (8) and 76.75 (5), respectively, with the terminal C1-C6 and C22-C27 phenyl rings. The pyrazolone ring (C17-C20/N1-N3/O3) is also reasonably planar, with an r.m.s. deviation for fitted atoms of $0.0402 \AA$. It makes dihedral angles of 39.24 (5), 68.43 (8) and 46.41 (6), respectively, with the ethylvanillin group and the terminal C1-C6 and C22-C27 phenyl rings.

Packing is stabilized by weak non-classical intermolecular C26-H26‥O3 hydrogen bonds, which form centrosymmetric dimers, together with an intermolecular C5-H5 $\cdots \mathrm{N} 1$ hydrogen bond (Fig. 2 and Table 2).

Experimental

An anhydrous ethanol solution of 4-(benzyloxy)-3-ethoxybenzaldehyde ($2.66 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous ethanol solution of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one $(2.03 \mathrm{~g}$, 10 mmol) and the mixture stirred at 350 K for 5 h under nitrogen, whereupon a yellow precipitate appeared. The product was isolated, recrystallized from ethanol and dried in a vacuum to give the pure compound in 86% yield. Yellow single crystals of (I) suitable for X-

Received 28 October 2005 Accepted 2 November 2005 Online 5 November 2005
ray analysis were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=441.52$
Monoclinic, $P 2_{1} / c$
$a=10.043(3) \AA$
$b=24.317(7) \AA$
$c=10.199(3) \AA$
$\beta=108.275(5)^{\circ}$
$V=2365.1(12) \AA^{3}$
$Z=4$
$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2344 reflections
$\theta=2.3-22.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.24 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.969, T_{\text {max }}=0.990$
13268 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.127$
$S=0.99$
4843 reflections
301 parameters

Figure 1
The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2
Packing diagram for (I) with hydrogen bonds drawn as dashed lines.

H atoms were included in calculated positions and refined using a riding-model approximation. Constrained $\mathrm{C}-\mathrm{H}$ bond lengths and isotropic U parameters: $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic $\mathrm{CH} ; 0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene $\mathrm{CH}_{2} ; 0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl CH_{3}.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2005 International Union of Crystallography

